Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38667374

RESUMO

The morphological changes in fat body cells, tergal gland cells, and the surface areas of the cell nuclei were determined in queen bees of the subspecies Apis mellifera carnica. This study focused on 1-, 8-, and 20-day-old uninseminated females kept in colonies, analyzing cells from three locations in the abdomen: the sternite, and tergites III and V. The oenocytes in the sternites were large, oval/circular with a centrally located nucleus, while in tergites III and V, they were small and triangular in the 1-day-old queens. During the first week of life, these cells in tergites III and V change their shape to oval and increase their sizes. The initially light yellow and then dark yellow granularities in the oenocytes of the fat body appear along with the advancing age of the queens. The trophocytes (sternites, tergites III and V) in the 1-day-old queens were completely filled with droplets of different sizes. In the 8- and 20-day-old queens, the number and size of the droplets decreased in the trophocytes of tergites III and V. The tergal gland cells had a centrally located cell nucleus in the 1-, 8- and 20-day-old queens. The dark granularities in these cells were visible only in the 20-day-old queens. Different morphological images of the fat body at the sternite, and tergites III and V, and the difference in the size of the oenocyte cell nuclei may indicate various functions of the fat body depending on its location. Characterization of the changes in the morphology of the fat body, taking into account its segmental character, and the tergal glands requires further research in older queens, e.g., one-year-old, brooding queens.

2.
Insects ; 13(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35621739

RESUMO

Social insect societies are characterized by a high level of organization. This is made possible through a remarkably complex array of pheromonal signals produced by all members of the colony. The queen's pheromones signal the presence of a fertile female and induce daughter workers to remain sterile. However, the lack of the queen mandibular pheromone leads to the emergence of rebels, i.e., workers with increased reproductive potential. We suggested that the rebels would have developed tergal glands and reduced Nasonov glands, much like the queen but contrary to normal workers. Our guess turned out to be correct and may suggest that the rebels are more queen-like than previously thought. The tergal gland cells found in the rebels were numerous but they did not adhere as closely to one another as they did in queens. In the rebels, the number of Nasonov gland cells was very limited (from 38 to 53) and there were fat body trophocytes between the glandular cells. The diameters of the Nasonov gland cell nuclei were smaller in the rebels than in the normal workers. These results are important for understanding the formation of the different castes of Apis mellifera females, as well as the division of labor in social insect societies.

3.
Sci Rep ; 11(1): 13887, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230567

RESUMO

Evolution has created different castes of females in eusocial haplodiploids. The difference between them lies in their functions and vulnerability but above all in their reproductive potentials. Honeybee queens are highly fertile. On the other hand, the workers are facultatively sterile. However, rebel workers, i.e. workers that develop in a queenless colony, reproduce more often than normal workers. As a result, the fat body of these bees, which apart from acting as the energy reserve, is also the site of numerous metabolic processes, had to specialize in different functions perfected over millions of years of eusocial evolution. Assuming that the variety of functions manifests itself in the pleomorphic structure of the fat body cells, we predicted that also different parts of the fat body, e.g. from different segments of the abdomen, contain different sets of cells. Such differences could be expected between queens, rebels and normal workers, i.e. females with dramatically different reproductive potentials. We confirmed all these expectations. Although all bees had the same types of cells, their proportion and segmental character corresponded with the caste reproductive potential and physiological characteristics shaped in the evolutionary process. The females with an increased reproductive potential were characterized by the presence of oenocytes in the third tergite and high concentrations of compounds responsible for energy reserves, like glucose, glycogen and triglycerides. Queens had very large trophocytes, especially in the third tergite. Only in workers did we observe intercellular spaces in all the segments of the fat body, as well as high protein concentrations-especially in the sternite. As expected, the rebels combined many features of the queens and normal workers, what with other findings can help understand the ways that led to the origin of different castes in females of eusocial Hymenoptera.


Assuntos
Abelhas/fisiologia , Corpo Adiposo/anatomia & histologia , Tegumento Comum/anatomia & histologia , Animais , Peso Corporal , Núcleo Celular/metabolismo , Corpo Adiposo/citologia , Feminino , Glucose/metabolismo , Glicogênio/metabolismo , Proteínas de Insetos/metabolismo , Reprodução , Triglicerídeos/metabolismo
4.
PLoS One ; 12(4): e0176539, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448564

RESUMO

We examined age-related biochemical and histological changes in the fat bodies and hemolymph of Osmia rufa males and females. We analysed solitary bees during diapause, in October and in April; as well as the flying insects following diapause, in May and June. The trophocyte sizes, as well as the numbers of lipid droplets were the greatest at the beginning of diapause. Subsequently, they decreased along with age. Triglyceride and glucose concentrations systematically decreased in fat body cells but increased in the hemolymph from October to June. Concentrations/activities of (enzymatic and non-enzymatic) antioxidant and proteolytic systems, as well as phenoloxidase, aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase levels were constant during the diapause, usually lower in the males than the females. Prior to the diapause/overwintering, the concentrations/activities of all the compounds were higher in the fat bodies than in the hemolymph. Later in the spring and in the summer, they increased in the hemolymph and on the body surfaces, while decreasing in the fat bodies. The global DNA methylation levels increased with age. Higher levels were always observed in the males than in the females. The study will promote better understanding of bee evolution and will be useful for the protection and management of solitary bees, with benefits to the environment and agriculture.


Assuntos
Abelhas/genética , Abelhas/fisiologia , Comportamento Animal , Metilação de DNA , Comportamento Social , Tecido Adiposo/metabolismo , Animais , Abelhas/metabolismo , Cruzamento , Conservação dos Recursos Naturais , Hemolinfa/metabolismo , Proteólise
5.
Arch Insect Biochem Physiol ; 86(3): 165-79, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24659567

RESUMO

Natural bioactive preparations that will boost apian resistance, aid body detoxification, or fight crucial bee diseases are in demand. Therefore, we examined the influence of coenzyme Q10 (CoQ10, 2,3-dimethoxy, 5-methyl, 6-decaprenyl benzoquinone) treatment on honeybee lifespan, Nosema resistance, the activity/concentration of antioxidants, proteases and protease inhibitors, and biomarkers. CoQ10 slows age-related metabolic processes. Workers that consumed CoQ10 lived longer than untreated controls and were less infested with Nosema spp. Relative to controls, the CoQ10-treated workers had higher protein concentrations that increased with age but then they decreased in older bees. CoQ10 treatments increased the activities of antioxidant enzymes (superoxide dismutase, GPx, catalase, glutathione S-transferase), protease inhibitors, biomarkers (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase), the total antioxidant potential level, and concentrations of uric acid and creatinine. The activities of acidic, neutral, and alkaline proteases, and concentrations of albumin and urea were lower in the bees that were administered CoQ10. CoQ10 could be taken into consideration as a natural diet supplement in early spring before pollen sources become available in the temperate Central European climate. A response to CoQ10 administration that is similar to mammals supports our view that Apis mellifera is a model organism for biochemical gerontology.


Assuntos
Antioxidantes/metabolismo , Abelhas/fisiologia , Ubiquinona/análogos & derivados , Animais , Abelhas/enzimologia , Abelhas/imunologia , Suplementos Nutricionais , Longevidade , Nosema , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Ubiquinona/administração & dosagem , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA